首页 > 其他分享 >【高等数学】多元微分学的应用

【高等数学】多元微分学的应用

时间:2024-12-26 19:26:46浏览次数:11  
标签:微分学 P0 partial 多元 2f y0 frac x0 高等数学

空间曲线的切线与法平面

参数方程 ( x ( t ) , y ( t ) , z ( t ) ) (x(t),y(t),z(t)) (x(t),y(t),z(t))

  • 切方向为 ( x ′ ( t ) , y ′ ( t ) , z ′ ( t ) ) (x'(t),y'(t),z'(t)) (x′(t),y′(t),z′(t)),

  • 在 ( x 0 , y 0 , z 0 ) = ( x ( t 0 ) , y ( t 0 ) , z ( t 0 ) ) (x_0,y_0,z_0)=(x(t_0),y(t_0),z(t_0)) (x0​,y0​,z0​)=(x(t0​),y(t0​),z(t0​)) 处的切线方程为

x − x 0 x ′ ( t 0 ) = y − y 0 y ′ ( t 0 ) = z − z 0 z ′ ( t 0 ) \frac{x-x_0}{x'(t_0)}=\frac{y-y_0}{y'(t_0)}=\frac{z-z_0}{z'(t_0)} x′(t0​)x−x0​​=y′(t0​)y−y0​​=z′(t0​)z−z0​​

  • 法线方程

x ′ ( t 0 ) ( x − x 0 ) + y ′ ( t 0 ) ( y − y 0 ) + z ′ ( t 0 ) ( z − z 0 ) = 0 {x'(t_0)}(x-x_0)+y'(t_0)(y-y_0)+z'(t_0) (z-z_0)=0 x′(t0​)(x−x0​)+y′(t0​)(y−y0​)+z′(t0​)(z−z0​)=0

参数方程特例 ( x , y ( x ) , z ( x ) ) (x,y(x),z(x)) (x,y(x),z(x))

  • 切方向为 ( 1 , y ′ ( x ) , z ′ ( x ) ) (1,y'(x),z'(x)) (1,y′(x),z′(x)),

  • 在 ( x 0 , y 0 , z 0 ) = ( x 0 , y ( x 0 ) , z ( x 0 ) ) (x_0,y_0,z_0)=(x_0,y(x_0),z(x_0)) (x0​,y0​,z0​)=(x0​,y(x0​),z(x0​)) 处的切线方程为

x − x 0 = y − y 0 y ′ ( x 0 ) = z − z 0 z ′ ( x 0 ) {x-x_0}=\frac{y-y_0}{y'(x_0)}=\frac{z-z_0}{z'(x_0)} x−x0​=y′(x0​)y−y0​​=z′(x0​)z−z0​​

  • 法平面方程

( x − x 0 ) + y ′ ( x 0 ) ( y − y 0 ) + z ′ ( x 0 ) ( z − z 0 ) = 0 (x-x_0)+y'(x_0)(y-y_0)+z'(x_0) (z-z_0)=0 (x−x0​)+y′(x0​)(y−y0​)+z′(x0​)(z−z0​)=0

一般方程 F ( x , y , z ) = 0 , G ( x , y , z ) = 0 F(x,y,z)=0, G(x,y,z)=0 F(x,y,z)=0,G(x,y,z)=0

由一般方程可以确立隐函数 ( y = y ( x ) , z = z ( x ) ) (y=y(x),z=z(x)) (y=y(x),z=z(x)),

0 = ∂ F ( x , y , z ) ∂ x + ∂ F ( x , y , z ) ∂ y d y d x + ∂ F ( x , y , z ) ∂ z d z d x 0=\frac{\partial F(x,y,z)}{\partial x} + \frac{\partial F(x,y,z)}{\partial y}\frac{dy}{dx}+ \frac{\partial F(x,y,z)}{\partial z}\frac{dz}{dx} 0=∂x∂F(x,y,z)​+∂y∂F(x,y,z)​dxdy​+∂z∂F(x,y,z)​dxdz​

0 = ∂ G ( x , y , z ) ∂ x + ∂ G ( x , y , z ) ∂ y d y d x + ∂ G ( x , y , z ) ∂ z d z d x 0=\frac{\partial G(x,y,z)}{\partial x} + \frac{\partial G(x,y,z)}{\partial y}\frac{dy}{dx}+ \frac{\partial G(x,y,z)}{\partial z}\frac{dz}{dx} 0=∂x∂G(x,y,z)​+∂y∂G(x,y,z)​dxdy​+∂z∂G(x,y,z)​dxdz​

因此 J = ∂ ( F , G ) ∂ ( y , z ) J=\frac{\partial (F,G)}{\partial (y,z)} J=∂(y,z)∂(F,G)​
d y d x = − 1 J ∂ ( F , G ) ∂ ( x , z ) \frac{dy}{dx}=-\frac{1}{J} \frac{\partial(F,G)}{\partial (x,z)} dxdy​=−J1​∂(x,z)∂(F,G)​
d z d x = − 1 J ∂ ( F , G ) ∂ ( y , x ) \frac{dz}{dx}=-\frac{1}{J} \frac{\partial(F,G)}{\partial (y,x)} dxdz​=−J1​∂(y,x)∂(F,G)​
回代到参数方程的特例中

  • 在 P 0 = ( x 0 , y 0 , z 0 ) P_0=(x_0,y_0,z_0) P0​=(x0​,y0​,z0​) 的法向量切线方程
    x − x 0 = y − y 0 y ′ ∣ P 0 = z − z 0 z ′ ∣ P 0 {x-x_0}=\frac{y-y_0}{y'|_{P_0}}=\frac{z-z_0}{z'|_{P_0}} x−x0​=y′∣P0​​y−y0​​=z′∣P0​​z−z0​​

    x − x 0 ∂ ( F , G ) ∂ ( y , z ) ∣ P 0 = y − y 0 ∂ ( F , G ) ∂ ( z , x ) ∣ P 0 = z − z 0 ∂ ( F , G ) ∂ ( x , y ) ∣ P 0 \frac{x-x_0}{\frac{\partial (F,G)}{\partial (y,z)}|_{P_0}}=\frac{y-y_0}{\frac{\partial(F,G)}{\partial (z,x)}|_{P_0}}=\frac{z-z_0}{\frac{\partial(F,G)}{\partial (x,y)}|_{P_0}} ∂(y,z)∂(F,G)​∣P0​​x−x0​​=∂(z,x)∂(F,G)​∣P0​​y−y0​​=∂(x,y)∂(F,G)​∣P0​​z−z0​​

  • 在 P 0 = ( x 0 , y 0 , z 0 ) P_0=(x_0,y_0,z_0) P0​=(x0​,y0​,z0​) 的法向量法平面方程

∂ ( F , G ) ∂ ( y , z ) ∣ P 0 ( x − x 0 ) + ∂ ( F , G ) ∂ ( z , x ) ∣ P 0 ( y − y 0 ) + ∂ ( F , G ) ∂ ( x , y ) ∣ P 0 ( z − z 0 ) = 0 {\frac{\partial (F,G)}{\partial (y,z)}|_{P_0}}(x-x_0)+{\frac{\partial(F,G)}{\partial (z,x)}|_{P_0}}(y-y_0)+{\frac{\partial(F,G)}{\partial (x,y)}|_{P_0}}(z-z_0)=0 ∂(y,z)∂(F,G)​∣P0​​(x−x0​)+∂(z,x)∂(F,G)​∣P0​​(y−y0​)+∂(x,y)∂(F,G)​∣P0​​(z−z0​)=0

∣ x − x 0 y − y 0 z − z 0 ∂ F ∂ x ∣ P 0 ∂ F ∂ y ∣ P 0 ∂ F ∂ z ∣ P 0 ∂ G ∂ x ∣ P 0 ∂ G ∂ y ∣ P 0 ∂ G ∂ z ∣ P 0 ∣ = 0 \left| \begin{matrix} x-x_0 & y-y_0 & z-z_0\\ \frac{\partial F}{\partial x}|_{P_0} &\frac{\partial F}{\partial y}|_{P_0} & \frac{\partial F}{\partial z}|_{P_0}\\ \frac{\partial G}{\partial x}|_{P_0} &\frac{\partial G}{\partial y}|_{P_0} & \frac{\partial G}{\partial z}|_{P_0}\\ \end{matrix}\right|=0 ​x−x0​∂x∂F​∣P0​​∂x∂G​∣P0​​​y−y0​∂y∂F​∣P0​​∂y∂G​∣P0​​​z−z0​∂z∂F​∣P0​​∂z∂G​∣P0​​​ ​=0

空间曲面的切平面与法线

一般式 F ( x , y , z ) = 0 F(x,y,z)=0 F(x,y,z)=0

  • 在 P 0 = ( x 0 , y 0 , z 0 ) P_0=(x_0,y_0,z_0) P0​=(x0​,y0​,z0​) 的法向量 n = ( ∂ F ∂ x , ∂ F ∂ y , ∂ F ∂ z ) ∣ P 0 n=(\frac{\partial F}{\partial x},\frac{\partial F}{\partial y},\frac{\partial F}{\partial z})|_{P_0} n=(∂x∂F​,∂y∂F​,∂z∂F​)∣P0​​

  • 在 P 0 = ( x 0 , y 0 , z 0 ) P_0=(x_0,y_0,z_0) P0​=(x0​,y0​,z0​) 的切平面 ∂ F ∂ x ∣ P 0 ⋅ ( x − x 0 ) + ∂ F ∂ y ∣ P 0 ⋅ ( y − y 0 ) + ∂ F ∂ z ∣ P 0 ⋅ ( z − z 0 ) = 0 \frac{\partial F}{\partial x}|_{P_0} \cdot (x-x_0)+\frac{\partial F}{\partial y}|_{P_0}\cdot(y-y_0)+\frac{\partial F}{\partial z}|_{P_0}\cdot(z-z_0)=0 ∂x∂F​∣P0​​⋅(x−x0​)+∂y∂F​∣P0​​⋅(y−y0​)+∂z∂F​∣P0​​⋅(z−z0​)=0

  • 在 P 0 = ( x 0 , y 0 , z 0 ) P_0=(x_0,y_0,z_0) P0​=(x0​,y0​,z0​) 的法线 x − x 0 ∂ F ∂ x ∣ P 0 + y − y 0 ∂ F ∂ y ∣ P 0 + z − z 0 ∂ F ∂ z ∣ P 0 = 0 \frac{x-x_0}{\frac{\partial F}{\partial x}|_{P_0}}+\frac{y-y_0}{\frac{\partial F}{\partial y}|_{P_0}} + \frac{z-z_0}{\frac{\partial F}{\partial z}|_{P_0}}=0 ∂x∂F​∣P0​​x−x0​​+∂y∂F​∣P0​​y−y0​​+∂z∂F​∣P0​​z−z0​​=0

二元函数 z = f ( x , y ) z=f(x,y) z=f(x,y)

设 F = f ( x , y ) − z F=f(x,y)-z F=f(x,y)−z

  • 在 P 0 = ( x 0 , y 0 , f ( x 0 , y 0 ) ) P_0=(x_0,y_0,f(x_0,y_0)) P0​=(x0​,y0​,f(x0​,y0​)) 的法向量 n = ( ∂ f ∂ x , ∂ f ∂ y , − 1 ) ∣ P 0 n=(\frac{\partial f}{\partial x},\frac{\partial f}{\partial y},-1)|_{P_0} n=(∂x∂f​,∂y∂f​,−1)∣P0​​

  • 在 P 0 P_0 P0​ 出的切平面

∂ f ∂ x ∣ P 0 ⋅ ( x − x 0 ) + ∂ f ∂ y ∣ P 0 ⋅ ( y − y 0 ) − ( z − z 0 ) = 0 \frac{\partial f}{\partial x}|_{P_0} \cdot (x-x_0)+\frac{\partial f}{\partial y}|_{P_0}\cdot(y-y_0)-(z-z_0)=0 ∂x∂f​∣P0​​⋅(x−x0​)+∂y∂f​∣P0​​⋅(y−y0​)−(z−z0​)=0

z = f ( x 0 , y 0 ) + ∂ f ∂ x ∣ P 0 ⋅ ( x − x 0 ) + ∂ f ∂ y ∣ P 0 ⋅ ( y − y 0 ) z=f(x_0,y_0)+\frac{\partial f}{\partial x}|_{P_0} \cdot (x-x_0)+\frac{\partial f}{\partial y}|_{P_0}\cdot(y-y_0) z=f(x0​,y0​)+∂x∂f​∣P0​​⋅(x−x0​)+∂y∂f​∣P0​​⋅(y−y0​)

  • 在 P 0 P_0 P0​ 出的法线
    − ( z − z 0 ) = x − x 0 ∂ f ∂ x ∣ P 0 = y − y 0 ∂ f ∂ y ∣ P 0 -(z-z_0)=\frac{x-x_0}{\frac{\partial f}{\partial x}|_{P_0}}=\frac{y-y_0}{\frac{\partial f}{\partial y}|_{P_0}} −(z−z0​)=∂x∂f​∣P0​​x−x0​​=∂y∂f​∣P0​​y−y0​​

(选看) n n n 元函数 z = f ( x ) z=f(x) z=f(x), x = ( x 1 , ⋯   , x n ) x=(x_1,\cdots,x_n) x=(x1​,⋯,xn​), x ˉ = ( x ˉ 1 , ⋯   , x ˉ n ) \bar{x}=(\bar{x}_1,\cdots,\bar{x}_n) xˉ=(xˉ1​,⋯,xˉn​)

  • 切平面: z = f ( x ˉ ) + ⟨ ∇ f ( x ˉ ) , x − x ˉ ⟩ z=f(\bar{x})+\langle \nabla f(\bar{x}), x-\bar{x}\rangle z=f(xˉ)+⟨∇f(xˉ),x−xˉ⟩

  • 法平面: − ( z − f ( x ˉ ) ) = x 1 − x ˉ 1 ∂ f ∂ x 1 ∣ x ˉ = ⋯ = x n − x ˉ n ∂ f ∂ x n ∣ x ˉ -(z-f(\bar{x}))=\frac{x_1-\bar{x}_1}{\frac{\partial f}{\partial x_1}|_{\bar{x}}}=\cdots=\frac{x_n-\bar{x}_n}{\frac{\partial f}{\partial x_n}|_{\bar{x}}} −(z−f(xˉ))=∂x1​∂f​∣xˉ​x1​−xˉ1​​=⋯=∂xn​∂f​∣xˉ​xn​−xˉn​​

参数方程 ( x ( u , v ) , y ( u , v ) , z ( u , v ) ) (x(u,v),y(u,v),z(u,v)) (x(u,v),y(u,v),z(u,v))

可以确定隐函数 u ( x , y ) u(x,y) u(x,y) 与 v ( x , y ) v(x,y) v(x,y),

J = ∂ ( x , y ) ∂ ( u , v ) J=\frac{\partial (x,y)}{\partial (u,v)} J=∂(u,v)∂(x,y)​,

因此 z = z ( u ( x , y ) , v ( x , y ) ) z=z(u(x,y),v(x,y)) z=z(u(x,y),v(x,y)),由反函数的偏微分

∂ z ∂ x = ∂ z ∂ u ∂ u ∂ x + ∂ z ∂ v ∂ v ∂ x = 1 J ∂ ( z , y ) ∂ ( u , v ) \frac{\partial z}{\partial x}=\frac{\partial z}{\partial u}\frac{\partial u}{\partial x}+\frac{\partial z}{\partial v}\frac{\partial v}{\partial x}= \frac{1}{J}\frac{\partial (z,y)}{\partial (u,v)} ∂x∂z​=∂u∂z​∂x∂u​+∂v∂z​∂x∂v​=J1​∂(u,v)∂(z,y)​
∂ z ∂ y = ∂ z ∂ u ∂ u ∂ y + ∂ z ∂ v ∂ v ∂ y = 1 J ∂ ( x , z ) ∂ ( u , v ) \frac{\partial z}{\partial y}=\frac{\partial z}{\partial u}\frac{\partial u}{\partial y}+\frac{\partial z}{\partial v}\frac{\partial v}{\partial y}=\frac{1}{J}\frac{\partial (x,z)}{\partial (u,v)} ∂y∂z​=∂u∂z​∂y∂u​+∂v∂z​∂y∂v​=J1​∂(u,v)∂(x,z)​
∂ z ∂ z = 1 \frac{\partial z}{\partial z}=1 ∂z∂z​=1

带入法向量中

n = ( ∂ ( y , z ) ∂ ( u , v ) , ∂ ( z , x ) ∂ ( u , v ) , ∂ ( x , y ) ∂ ( u , v ) ) n=(\frac{\partial(y,z)}{\partial (u,v)},\frac{\partial(z,x)}{\partial (u,v)}, \frac{\partial (x,y)}{\partial (u,v)}) n=(∂(u,v)∂(y,z)​,∂(u,v)∂(z,x)​,∂(u,v)∂(x,y)​)

切平面方程

⟨ n , P 0 P ⟩ = 0 \langle n, P_0 P\rangle =0 ⟨n,P0​P⟩=0

∣ x − x 0 y − y 0 z − z 0 ∂ x ∂ u ∣ P 0 ∂ y ∂ u ∣ P 0 ∂ z ∂ u ∣ P 0 ∂ x ∂ v ∣ P 0 ∂ y ∂ v ∣ P 0 ∂ z ∂ v ∣ P 0 ∣ = 0 \left|\begin{matrix} x-x_0 & y-y_0 & z-z_0\\ \frac{\partial x}{\partial u}|_{P_0} &\frac{\partial y}{\partial u}|_{P_0}&\frac{\partial z}{\partial u}|_{P_0}\\ \frac{\partial x}{\partial v}|_{P_0} &\frac{\partial y}{\partial v}|_{P_0}&\frac{\partial z}{\partial v}|_{P_0} \end{matrix}\right| =0 ​x−x0​∂u∂x​∣P0​​∂v∂x​∣P0​​​y−y0​∂u∂y​∣P0​​∂v∂y​∣P0​​​z−z0​∂u∂z​∣P0​​∂v∂z​∣P0​​​ ​=0

法线方程

x − x 0 ∂ ( y , z ) ∂ ( u , v ) = y − y 0 ∂ ( z , x ) ∂ ( u , v ) = z − z 0 ∂ ( x , y ) ∂ ( u , v ) \frac{x-x_0}{\frac{\partial(y,z)}{\partial (u,v)}} =\frac{y-y_0}{\frac{\partial(z,x)}{\partial (u,v)}}=\frac{z-z_0}{\frac{\partial (x,y)}{\partial (u,v)}} ∂(u,v)∂(y,z)​x−x0​​=∂(u,v)∂(z,x)​y−y0​​=∂(u,v)∂(x,y)​z−z0​​

方向导数

给定向量的方向角 ( α , β , γ ) (\alpha,\beta,\gamma) (α,β,γ), l = ( cos ⁡ ( α ) , cos ⁡ ( β ) , cos ⁡ ( γ ) ) l=(\cos(\alpha), \cos(\beta),\cos(\gamma)) l=(cos(α),cos(β),cos(γ)), f f f在 ( x 0 , y 0 , z 0 ) (x_0,y_0,z_0) (x0​,y0​,z0​) 沿着方向 l l l 的方向导数为

∂ f ∂ l = lim ⁡ t → 0 f ( x 0 + t cos ⁡ ( α ) , y 0 + t cos ⁡ ( β ) , z 0 + t cos ⁡ ( γ ) ) − f ( x 0 , y 0 , z 0 ) t \frac{\partial f}{\partial l}=\lim_{t\to 0}\frac{f(x_0+t\cos(\alpha), y_0+t\cos(\beta),z_0+t\cos(\gamma))-f(x_0,y_0,z_0)}{t} ∂l∂f​=limt→0​tf(x0​+tcos(α),y0​+tcos(β),z0​+tcos(γ))−f(x0​,y0​,z0​)​

  • 若函数 f f f 可微 ∂ f ∂ l = ⟨ ∇ f ( x ) , l ⟩ = ∂ f ∂ x cos ⁡ ( α ) + ∂ f ∂ y cos ⁡ ( β ) + ∂ f ∂ z cos ⁡ ( γ ) \frac{\partial f}{\partial l}= \langle \nabla f(x), l\rangle= \frac{\partial f}{\partial x}\cos(\alpha)+\frac{\partial f}{\partial y}\cos(\beta)+\frac{\partial f}{\partial z}\cos(\gamma) ∂l∂f​=⟨∇f(x),l⟩=∂x∂f​cos(α)+∂y∂f​cos(β)+∂z∂f​cos(γ)

(选看) 其他方向导数

  • Gatueax 方向导数: 在 x x x 处沿着方向 d d d 的 Gatueax 方向导数, 如果极限存在 f ′ ( x ; d ) = lim ⁡ t → 0 f ( x + t d ) − f ( x ) t f'(x;d)=\lim_{t\to 0} \frac{f(x+td)-f(x)}{t} f′(x;d)=limt→0​tf(x+td)−f(x)​

  • Hadmard 导数: 在 x x x 处沿着方向 d d d 的 Hadmard 方向导数, 如果极限存在 f o ( x ; d ) = lim ⁡ t → 0 , h → d f ( x + t h ) − f ( x ) t f^o(x;d)=\lim_{t\to 0, h\to d} \frac{f(x+t h)-f(x)}{t} fo(x;d)=limt→0,h→d​tf(x+th)−f(x)​

多元函数求极值

极小值定义

在 P 0 P_0 P0​ 的某个邻域 U ( P 0 ) U(P_0) U(P0​)内, f ( P ) ≥ f ( P 0 ) f(P)\geq f(P_0) f(P)≥f(P0​), ∀ P ∈ U ( P 0 ) \forall P\in U(P_0) ∀P∈U(P0​)

极大值定义

在 P 0 P_0 P0​ 的某个邻域 U ( P 0 ) U(P_0) U(P0​)内, f ( P ) ≤ f ( P 0 ) f(P)\leq f(P_0) f(P)≤f(P0​), ∀ P ∈ U ( P 0 ) \forall P\in U(P_0) ∀P∈U(P0​)

二元函数

  • 一阶必要性: 函数 f f f 可微, 如果在 ( x 0 , y 0 ) (x_0,y_0) (x0​,y0​) 处取得极值, 则 ∂ f ( x 0 , y 0 ) ∂ x = ∂ f ( x 0 , y 0 ) ∂ y = 0 \frac{\partial f(x_0,y_0)}{\partial x}=\frac{\partial f(x_0,y_0)}{\partial y}=0 ∂x∂f(x0​,y0​)​=∂y∂f(x0​,y0​)​=0.

  • 二阶必要性: 函数 f f f 可微, 如果在 ( x 0 , y 0 ) (x_0,y_0) (x0​,y0​) 处取得极小值, 则 ∂ f ( x 0 , y 0 ) ∂ x = ∂ f ( x 0 , y 0 ) ∂ y = 0 \frac{\partial f(x_0,y_0)}{\partial x}=\frac{\partial f(x_0,y_0)}{\partial y}=0 ∂x∂f(x0​,y0​)​=∂y∂f(x0​,y0​)​=0, ∂ 2 f ∂ x 2 ≥ 0 \frac{\partial^2 f}{\partial x^2}\geq 0 ∂x2∂2f​≥0, ∣ ∂ 2 f ∂ x 2 ∂ 2 f ∂ x ∂ y ∂ 2 f ∂ x ∂ y ∂ 2 f ∂ y 2 ∣ ≥ 0 \left|\begin{matrix}\frac{\partial^2 f}{\partial x^2} &\frac{\partial^2 f}{\partial x\partial y}\\ \frac{\partial^2 f}{\partial x\partial y} &\frac{\partial^2 f}{\partial y^2} \end{matrix}\right|\geq 0 ​∂x2∂2f​∂x∂y∂2f​​∂x∂y∂2f​∂y2∂2f​​ ​≥0.

  • 二阶必要性: 函数 f f f 可微, 如果在 ( x 0 , y 0 ) (x_0,y_0) (x0​,y0​) 处取得极大值, 则 ∂ f ( x 0 , y 0 ) ∂ x = ∂ f ( x 0 , y 0 ) ∂ y = 0 \frac{\partial f(x_0,y_0)}{\partial x}=\frac{\partial f(x_0,y_0)}{\partial y}=0 ∂x∂f(x0​,y0​)​=∂y∂f(x0​,y0​)​=0, ∂ 2 f ∂ x 2 ≤ 0 \frac{\partial^2 f}{\partial x^2}\leq 0 ∂x2∂2f​≤0, ∣ ∂ 2 f ∂ x 2 ∂ 2 f ∂ x ∂ y ∂ 2 f ∂ x ∂ y ∂ 2 f ∂ y 2 ∣ ≥ 0 \left|\begin{matrix}\frac{\partial^2 f}{\partial x^2} &\frac{\partial^2 f}{\partial x\partial y}\\ \frac{\partial^2 f}{\partial x\partial y} &\frac{\partial^2 f}{\partial y^2} \end{matrix}\right|\geq 0 ​∂x2∂2f​∂x∂y∂2f​​∂x∂y∂2f​∂y2∂2f​​ ​≥0.

  • 二阶充分性: 函数 f f f 可微, 如果 ∂ f ( x 0 , y 0 ) ∂ x = ∂ f ( x 0 , y 0 ) ∂ y = 0 \frac{\partial f(x_0,y_0)}{\partial x}=\frac{\partial f(x_0,y_0)}{\partial y}=0 ∂x∂f(x0​,y0​)​=∂y∂f(x0​,y0​)​=0, ∂ 2 f ∂ x 2 > 0 \frac{\partial^2 f}{\partial x^2}> 0 ∂x2∂2f​>0, ∣ ∂ 2 f ∂ x 2 ∂ 2 f ∂ x ∂ y ∂ 2 f ∂ x ∂ y ∂ 2 f ∂ y 2 ∣ > 0 \left|\begin{matrix}\frac{\partial^2 f}{\partial x^2} &\frac{\partial^2 f}{\partial x\partial y}\\ \frac{\partial^2 f}{\partial x\partial y} &\frac{\partial^2 f}{\partial y^2} \end{matrix}\right|> 0 ​∂x2∂2f​∂x∂y∂2f​​∂x∂y∂2f​∂y2∂2f​​ ​>0, 则在 ( x 0 , y 0 ) (x_0,y_0) (x0​,y0​) 处取得极小值.

  • 二阶充分性: 函数 f f f 可微, 如果 ∂ f ( x 0 , y 0 ) ∂ x = ∂ f ( x 0 , y 0 ) ∂ y = 0 \frac{\partial f(x_0,y_0)}{\partial x}=\frac{\partial f(x_0,y_0)}{\partial y}=0 ∂x∂f(x0​,y0​)​=∂y∂f(x0​,y0​)​=0, ∂ 2 f ∂ x 2 < 0 \frac{\partial^2 f}{\partial x^2}< 0 ∂x2∂2f​<0, ∣ ∂ 2 f ∂ x 2 ∂ 2 f ∂ x ∂ y ∂ 2 f ∂ x ∂ y ∂ 2 f ∂ y 2 ∣ > 0 \left|\begin{matrix}\frac{\partial^2 f}{\partial x^2} &\frac{\partial^2 f}{\partial x\partial y}\\ \frac{\partial^2 f}{\partial x\partial y} &\frac{\partial^2 f}{\partial y^2} \end{matrix}\right|> 0 ​∂x2∂2f​∂x∂y∂2f​​∂x∂y∂2f​∂y2∂2f​​ ​>0. 则在 ( x 0 , y 0 ) (x_0,y_0) (x0​,y0​) 处取得极大值

(选看) n 元函数

  • 一阶必要性: 函数 f f f 可微, 如果在 P 0 P_0 P0​ 处取得极值, 则 ∇ f ( P 0 ) = 0 \nabla f(P_0)=0 ∇f(P0​)=0.

  • 二阶必要性: 函数 f f f 可微, 如果在 P 0 P_0 P0​ 处取得极小值, 则 ∇ f ( P 0 ) = 0 \nabla f(P_0)=0 ∇f(P0​)=0, ∇ 2 f ( P 0 ) ⪰ 0 \nabla^2 f(P_0)\succeq 0 ∇2f(P0​)⪰0 半正定的海瑟矩阵.

  • 二阶必要性: 函数 f f f 可微, 如果在 P 0 P_0 P0​ 处取得极大值, 则 ∇ f ( P 0 ) = 0 \nabla f(P_0)=0 ∇f(P0​)=0, ∇ 2 f ( P 0 ) ⪯ 0 \nabla^2 f(P_0)\preceq 0 ∇2f(P0​)⪯0 半负定的海瑟矩阵.

  • 二阶充分性: 函数 f f f 可微, 如果 ∇ f ( P 0 ) = 0 \nabla f(P_0)=0 ∇f(P0​)=0, ∇ 2 f ( P 0 ) ≻ 0 \nabla^2 f(P_0)\succ 0 ∇2f(P0​)≻0 正定海瑟矩阵, 则 P 0 P_0 P0​ 处取得极小值.

  • 二阶充分性: 函数 f f f 可微, 如果 ∇ f ( P 0 ) = 0 \nabla f(P_0)=0 ∇f(P0​)=0, ∇ 2 f ( P 0 ) ≺ 0 \nabla^2 f(P_0)\prec 0 ∇2f(P0​)≺0 负定海瑟矩阵, 则 P 0 P_0 P0​ 处取得极大值.

条件极值

min ⁡ f ( x , y , z ) \min f(x,y,z) minf(x,y,z)
s . t .    ϕ ( x , y , z ) = 0 \mathrm{s.t.} ~~\phi(x,y,z)=0 s.t.  ϕ(x,y,z)=0
ψ ( x , y , z ) = 0 \quad\quad \psi(x,y,z)=0 ψ(x,y,z)=0

设 拉格朗日函数 L ( x , y , z ; λ , μ ) = f ( x , y , z ) + λ ϕ ( x , y , z ) + μ ψ ( x , y , z ) L(x,y,z;\lambda,\mu)= f(x,y,z)+\lambda \phi(x,y,z)+\mu \psi(x,y,z) L(x,y,z;λ,μ)=f(x,y,z)+λϕ(x,y,z)+μψ(x,y,z)

联立梯度与等式约束得到方程组

0 = ∂ ∂ x f ( x , y , z ) + λ ∂ ∂ x ϕ ( x , y , z ) + μ ∂ ∂ x ψ ( x , y , z ) 0=\frac{\partial}{\partial x}f(x,y,z)+\lambda \frac{\partial}{\partial x}\phi(x,y,z)+\mu \frac{\partial}{\partial x}\psi(x,y,z) 0=∂x∂​f(x,y,z)+λ∂x∂​ϕ(x,y,z)+μ∂x∂​ψ(x,y,z)
0 = ∂ ∂ y f ( x , y , z ) + λ ∂ ∂ y ϕ ( x , y , z ) + μ ∂ ∂ y ψ ( x , y , z ) 0=\frac{\partial}{\partial y}f(x,y,z)+\lambda \frac{\partial}{\partial y}\phi(x,y,z)+\mu \frac{\partial}{\partial y}\psi(x,y,z) 0=∂y∂​f(x,y,z)+λ∂y∂​ϕ(x,y,z)+μ∂y∂​ψ(x,y,z)
0 = ∂ ∂ z f ( x , y , z ) + λ ∂ ∂ z ϕ ( x , y , z ) + μ ∂ ∂ z ψ ( x , y , z ) 0=\frac{\partial}{\partial z}f(x,y,z)+\lambda \frac{\partial}{\partial z}\phi(x,y,z)+\mu \frac{\partial}{\partial z}\psi(x,y,z) 0=∂z∂​f(x,y,z)+λ∂z∂​ϕ(x,y,z)+μ∂z∂​ψ(x,y,z)
0 = ϕ ( x , y , z ) 0=\phi(x,y,z) 0=ϕ(x,y,z)
0 = ψ ( x , y , z ) 0=\psi(x,y,z) 0=ψ(x,y,z)

进一步判断 L L L 的二阶偏导判断其极大与极小性质.

n元函数条件极值

min ⁡ f ( x ) \min f(x) minf(x)
s . t .    g ( x ) = 0 \mathrm{s.t.}~~ g(x)=0 s.t.  g(x)=0

L ( x , λ ) = f ( x ) + g ( x ) ⊤ λ L(x,\lambda)=f(x)+g(x)^\top\lambda L(x,λ)=f(x)+g(x)⊤λ
一阶必要性条件
0 = ∇ x L ( x , λ ) = ∇ x f ( x ) + J x g ( x ) ∗ λ 0=\nabla_x L(x,\lambda)=\nabla_x f(x)+J_xg(x)^{*}\lambda 0=∇x​L(x,λ)=∇x​f(x)+Jx​g(x)∗λ.

g ( x ) = 0 g(x)=0 g(x)=0

标签:微分学,P0,partial,多元,2f,y0,frac,x0,高等数学
From: https://blog.csdn.net/serpenttom/article/details/144738030

相关文章